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This is a brief, annual status report which includes the theoretical achievement and the

experimental setup during the report period of April 1, 1991 to March 31, 1992.

The theoretical achievement is based on our paper entitled "Rewetting Theory and the

Dryout Heat Flux of Smooth and Grooved Plates with a Uniform Heating" (see Appendix A)

which has been accepted in the "Heat Pipes and Thermosyphons" session at the 1992 ASME

Winter Annual Meeting. Although several investigations have been made to determine the

rewetting characteristics of liquid films on heated rods, tubes and flat plates, no solutions are

yet available to describe the rewetting process of a hot plate subjected to a unit;orm heating. In

our paper, a model is presented to analyze the rewetting process of such plates with and without

grooves. Approximate analytical solutions are presented for the prediction of the rewetting

velocity and the transient temperature profiles of the plates. It is shown that the present

rewetting velocity solution reduces correctly to the existing solution for the rewetting of an

initially hot isothermal plate without heating from beneath the plate. Numerical solutions have

also been obtained to validate the analytical solutions. In Appendix A, the successful prediction

of the rewetting curve by the approximate analytical solution for the grooved (or smooth) plate

with a uniform heating is illustrated. It shows that the approximate closed form solution is in

reasonably good agreement with the numerical solution. Furthermore, a simple method is

presented in Appendix A to predict the dryout heat flux of a liquid film flowing over a heated

smooth or grooved plate. The results of the prediction are found to be in reasonable agreement

with the existing experimental data.

During this first annual period, an experimental system has been set up, design of which

has been reported in our semiannual status report on October 18, 1991, which includes (1)



microfin surfacegeometryof the groovedplate; (2) the selectionof the test fluid and plate

material; (3) surface temperaturemeasurementmechanism;(4) liquid flow rate control and

measurementdesign; (5) heat sourceof constanttemperature/variableheat flux system. The

complete experimental system including the data acquisition system was being built and

assembledduring thesecondhalf of theyear. Someshake-upexperimentsto measurerewetting

velocity and thesurfacetemperaturedistribution of theplatewill beconducted. Figure 1 shows

the overall experimentalsystemwhile Figure 2 showsthe test section. Someexperimental

resultswill be reportedin the next semiannualstatusreport.

Fig. 1. Heat PipeRewettingExperimentalSystem
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Fig. 2. Test Section
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APPENDIX

A reprint of the paper entitled, "Rewetting Theory and the Dryout Heat Flux of Smooth

and Grooved Plates With a Uniform Heating," to be presented at 1992 ASME Winter Annual

Meeting.



To be presented at 1992 AS_fE Winter Annual Meeting, Anaheim, CA. Nov. 8-13, 1992.

REWETTING THEORY AND THE DRYOUT HEAT FLUX OF SMOOTH
GROOVED PLATES WITH A UNIFORM HEATING

S. H. Chart and W. Zhang
Department of Mechanical Engineering
University of Wisconsin--Milwaukee

P. O." Box 784

Milwaukee, Wisconsin 53201

ABSTRACT

The evaporation and condensation of thin liquid f'dms are

of significant importance in a wide variety of problems ranging
from specific applications, in the heat pipe field to more general
ones in chemical, nuclear and petrochemical industries. Although
several investigations have been conducted to determine the
rewetting characteristics of liquid films on heated rods, tubes and

flat plates, no ,solutions are yet available to describe the rewetting
process of a hot plate subjected to a uniform heating. A model is
presented to analyze the rewetting process of such plates with and
without grooves. Approximate analytical solutions are presented
for the prediction of the rewetting velocity and the transient
temperature profiles of the plates. It is shown that the present
rewetting velocity solution reduces correctly to the existing

solution for the rewetting of an initially hot isothermal plate
without heating from beneath the plate. Numerical solutions have

also been obtained to validate the analytical solutions. Finally, a
simple method is presented to predict the dryout heat flux of a

liquid film flowing over a heated smooth or grooved plate. The
results of the prediction are found to be in reasonable agreement
with the existing experimental data.
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NOMENCLATURE T A

A dimensionless heat source Tf

a I coefficient defined in eq. (65) Ti

B Biot number with respect to the convective heat transfer To

coefficient T_

C r thermal capacitance (J/Kg-°C) Tt

h surface convective heat transfer coefficient (W/m2-°C) t

average boiling heat transfer coefficient (W/m2-°C) Ur
X

h_ convective coefficient between plate and environmental

gas (WImL"C) x'

K

L

N

n

P

q

qc,F

q_

s

thermal conductivity (Wlm-°C)

length of the plate (m)

length of wet region (m)

length of dry region (m)

grooved geometric coefficient

exponent defined in eq. (65)

dimensionless rewetting velocity

uniform heat flux (W/m 2)

critical heat flux (CHF) (W/m 2)

incipient boiling heat flux (W/m 2)

maximum heat flux (W/m 2)

plate thickness for smooth (sl) or grooved (s I - tl)

plates (m)

plate thickness (m)

liquid film thickness (m)

temperature (°C)

environmental temperature (°C)

inlet liquid temperature (°C)

incipient boiling temperature (°C)

Leidenfrost temperature (°C)

saturation tenaperature (°C)

initial hot surface temperature (°C)

time (see)

rewetting front velocity (m/s)

length of liquid film in moving front coordinate (m)

length of liquid film in stationary system (nO



Greek symbols

OL 1

Ot 2

&

f_z

7'

0

Oh

Os

7"

p

Subscripts

d

g

L

Lx

Za

S

W

constant defined in eq. (23)

constant defined in eq. (45)

constant defined in eq. (23)

constant deemed in eq. (45)

dimensionless length coordinate with respect to x

dimensionless length coordinate with respect to x'

dimensionless temperature

dimensionless temperature of the transient part

dimensionless temperature of the steady-state part

dimensionless time

density (Kg/m 3)

dry region

grooved plate

total length of the plate

length of wet region

length of dry region

smooth plate

wet region

INTRODUCTION

The rewetting process is a conjugated heat transfer problem
involving interactions between a solid wall and flowing fluids.
The process for rewetting of a grooved plate with a uniform
heating is complicated, as the rewe_ing velocity varie_ with time,

physical geometry of the grooves, plate properties, fluid properties
and the applied heat flux. Although several investigations
(Yamanouchi, 1968; Thompson, 1972; Duffey, 1973; Sun, 1974;

Alario, 1983; Grimley, 1988; Stroes, 1990; Ferng, 1991; Peng
and Peterson, I991) have been made to determine the rewetting
characteristics of liquid films on heated rods, tubes and flat plates,
none has yet presented the solution for the rewetting process of a
heated plate with a smooth or a grooved surface subjected to a
uniform heat flux. It is noted that the surface with small grooves
has received increasing attention as it has many practical

applications. For instance, the microgrooved surface is employed
most often to enhance heat transfer (Grimley, 1988).
Microgrooves are also useful for replacing the wicking material in
heat pipes. In fact, it is used in the innovative monogroove heat

pipe design for the thermal radiators of the space station (Alario
et al., 1983). The recent attempt to solve for the rewetting
process of a plate subjected to a uniform heating by Peng and
Peterson (1991) has apparently encountered a difficulty as their
transient temperature profile of the heated plate was incompatible
with their boundary conditions. One of the objectives here is to

present a physical model suitable for the rewetting analysis of a
plate heated by a constant heat flux from below. Solutions for the

transient temperature profile and the rewetting velocity are
presented. The incompatibility problem is also resolved. Another

objective is to analyze the dryout limit of a grooved surface

initially wetted by a liquid f'dm. A means is provided for the
prediction of the maximum heat input which results in the dryout

of the liquid on the plate. The result of the prediction is compared
with the experimental data of Grimley (1988).

REWETrING MODEL AND SOLUTIONS

Consider the rewetting process of a hot plate initially at a
uniform temperature T_ with no liquid on the plate as shown in
Fig. 1, the plate is heated below by a uniform heat flax and is
quenched by a liquid advancing along the direction of the grooves

on the top surface of the plate. In order to simplify the complexity
of the physical phenomena of the rewetting process, we consider

first a heated smooth surface plate with no parallel grooves.

1, Smooth Surface Plate

The rewetting process of a hot dry plate is sketched in Fig.
1. A liquid film from a liquid reservoir, driven by its surface
tension, is to advance along the hot plate• Similar to prior studies
by Yamanouchi (1968), Duffey and Porthouse (1973), and Sun et
al. (1974), the initial temperature of the plate is assumed to be

higher than Leidenfrost temperature T o such that the rewetting
process is assumed to be conduction-controlled. Also, an averaged
heat transfer coefficient is assumed in the wet region to remove the
heat from the thin plate to the liquid film, no heat loss to the

environment is assumed in the dry region, the plate at the rewet
front is assumed to remain at a constant Leidenfrost temperature,
and the plate is thin enough that the one-dimensional rewetting
model can be invoked. It is therefore proposed to solve the
following governing equation (see Appendix A) on a Lagrangian
coordinate moving with the rewetting front,

aO = 020 + p 00 _BO +A (1)
ar &/2 -- &q

where

P = UrSlPCp" B = hsl
K ' K

_ qs 1 • T - Ts (2)
,4 K (7"o- r,)' O (,1,_')= ro__r '

x t
v/ =_, 7"=

sl (,?pc_/K )
at _2

where, B is the Biot number; A, P, 0(7/,r), r/ and r are the
dimensionless heat source, rewetting velocity, temperature, length
and time respectively. In the wet region (-L l < x < 0),

h=constant#0 while in the dry region (0 < x < Ia), h=B=0.
The above governing equation is different from the equation

in all prior rewetting models (Yamanouchi, 1968; Duffey, 1973;
Sun, 1974; Peng, 1991 et al.) in that an extra term, namely, the
transient term on the left-hand side of the equation, is added. The
addition of this transient term is essential in analyzing the
rewetting process of the heated plate subjected to a heat flux
conduction as shown in Fig. 1. This is because the temperature
profile of the plate in the Lagrangian coordinate (x, y) is no longer
invariant with time as in the ease of rewetting an initially hot
isothermal plate without heating from beneath the plate. Without



it, theincompatibilitydifficultyasnotedabovewillariseandthe
final solution can not be expected to satisfy the transient boundary
condition at x= oo. The addition of the transient term, however,

renders some mathematical complications in the solution of the
rewetting velocity.

The initial condition is

0 (,_,0) = _rl - r, = 0t (3)
To-T ,

while the boundary conditions are,

# (-TL,,r) -- 0 (4)

0 (0,r) -- 1 (5)

0 (_G,r) = TL - Ts =01 +ar (6)
7"o re

where r/L1 and _/L2are defined as

L1 L2

_L," 77 ' % = 7,
(7)

and T L is the dry plate temperature at _/L2. The condition given in
eq. (6) implies that the plate is long enough such that, within the
time period of interest, the plate temperature at _/L2 is not
thermally affected by the rewetting process. Consequently, it can
be expressed as

TL = 1,1 + qt (8)
pCpSl

which is used in eq. (6).
In the wet region (-7L1 < 7 < 0), the mathematical model

of this problem is given as

00 __020+ p 00 _
* 072 _ B 0. A (9)

0 (v/,0) = 01 (10)

o (-'_L.,r) = 0 01)

0 (O,r) = 1 (12)

To solve for the exact, analytical solution of the above
appears to be difficult, if not impossible. Therefore an
approximate, analytical solution is sought. This is made possible

by treating the Peclet number, P, as a constant value in the
mathematical deliberation in order to achieve a closed form

solution. This approximation appears to be reasonable as the
rewetting velocity tends to reach a quasi-steady state after an initial

period when the liquid film is brought in contact with the hot
plate. The numerically exact solution will also be presented later

to check the accuracy of the closed form solution. Accordingly,
the solution is split into two parts,

f**_ !

where 0s,w

0 (7 ,r) = 0_,w (7) + Oh,_ Ol,r) (13)

is the solution for the steady-state part of the problem,

dO,.d2Os'w +P -B0,_ +A =0 (14)
d_ 2 d_ '

0.,., (o) = 1 " 05)

0,,w (-7q) = 0 (16)

while 0h,w is the solution to the transient part of the problem

OOh,w 020h,w OOh,w
= +p - B Oh,w

Or &lz Orl
(17)

Oh,_(,7,0) = 0, - 0,,w (7) (18)

Oh,w (O,r) = 0 (19)

Oh,w (-%,,r) = 0

The solution of the steady-state problem is given as

A -rl_Ll

A (1 - ._ )e + '
- - e rt_

0s,_ (7) = 1 _ e-rl_/'l e-r2lltl

(1 A.-rl_t., + ;J

+ -_ _e er=,l A....... + __

e -rlttLI e "r2rlLl B

(20)

(21)

_p + _/p2 + 4B
rl = 2

_p _ _/p2 + 4B
r2= 2

To solve for the transient solution,
transformation is introduced,

Oh,. (7, r) = e _*_*e,_ v(7,r)

the following

(22)



where

oq = -P/2 , B1 = -B - p2/4 (23)

Then eqs. (17) to (20) become

Ov a2v
- (24)

Or 072

v (7,0) = e-'_n (01 - Os,w 01)) " fl 0/) (25)

v (0,r) = 0 (26)

v (-%:) = 0 (27)

The solution of the above can be readily obtained from
Carslaw (1959) as follows:

where

= Llv (_/,r) _ an sin(-n_rtl)e -n2r_r&2
n = I _/L x

(28)

_ 2.2_ io fl(V)sin(_nTrV)d V (29)
an_ = rlL_ -%1 "tlLI

./'1(V) = e -=,v {01 _
I A )e'rl_q A 1

1 -A- (1-__ +__ B eqV

B -q_L_ e "r_t't

e - -' (30)

I A. -r1_LI . A ]
(1 + _;e + BJe,_V A

Therefore, the combined solution is

o (7,0 = o,,w (7) + Oh,w(n,r)

A -rl_Ll + A 1

(i - __)_ __]

2r,,'--:,-- e--'_,,,_' J

I a . -rl_ll.t a 1

+ (1
e rl_Ll - e r2tlLI J

ert_

(31)

-n2z'_ rlrl+A +e_l_*#: an_ sin (_nTrn) e qB
n=l _L!

where an1 and t'10/) are given by eqs. (29) and (30) respectively,
a 1 and Bx are given by eq. (23).

Before proceeding to the solution for the dry region, it is
noted that the above steady-state solution is identical to the solution
presented by previous workers (Sun et al., 1974) when A = 0 (or
q = 0).

Similarly, the problem in the dry region (0 __<_7__<_L2) is
described by

ao _a2° + p ao
a-_ " aTi2 _ + A (32)

0 (7,0) = O_ (33)

o (O,r) = i

O(rIG,r ) =01 +at

(34)

(35)

which is likewise spUt up into the steady-state and transient
solution,

d2Os,d dO_,a
+P-- +A =0

dr/2 d_/
(36)

o_,d (o) = 1 (37)

Os, d (_/.,2) = 01 (38)

and



aOh,d-- __a2Oh'd+ P aOh,d

#_" a_2 3_

Oh,e (_,0) = 01 - 0_,e (_)

Oh,a(O,r) = 0

Oh,d(nh,O = A r

The solution of the steady-state problem is

01 + ._ _ - 1
O_,d(_) = 1 - ----.-- -

e -m_ - 1

A
01 + _ _ -1

+ e-p'q

e-P_q - 1

A similar transformation is introduced

Oh,a(_, r) = e _*th' u(_, r)

A

(39)

(40)

(41)

(42)

(43)

(44)

where: _2 _ -p/2, 32 = -P 2/4 (45)

00/, r)= e °_n* (_: Ii _ an2 sin [ nx_ ] e-n2_:_:,_

=, [- dJL"

_t_ _q _*1 3n

T

+I - A 101 -_ _tq - 1

e?::-I (50)

A

01+._rlq- I

e-Pnta_ I

where fin = n_rh/L 2 and

nta

2 I mrw
a.z = _ f2(w) sin _ dw

At the rewetting front, the conductive heat flux is
continuous, i.e.,

(51)

Upon the substitution of eqs. (31) and (50) into eq. (51), the
dimensionless rewetting velocity P can be determined by the
expression

to reduce eqs. (39) to (42) to the form

au a2u
_ = _ (46)
Or 0_2

u(r/, 0) = (01 - O.,a(_))e -'_ -fz07) (47)

u(0, r) = 0 (48)

U07L2, r) = At. e -(_h*a:) - _b2(r) (49)

which can be solved by the method of linear superposition.

the transient temperature profile in the dry region can be readily
found as

-: [I+B] + _72+4B2 [ l-A] -_"_+4B

[A-r,.A1(1 --_)e +-B + eta: _ _ mr a.te.......... -":_/_1

:" an2 e + __

n° l _lta

__ o, Ae -_nta - _r [e+ 2e _: __, (_l)n { (_-_)r

I°1"A 1
(52)



It is of interestto examinethelimitingsolutionof the
abovefor thecasethathasbeeninvestigatedby Yamanouchi
(1968),namely,therewettingof an infinitelylong,hotand
isothermalplatewithoutanyheating.In thiscase,A=0 (i.e.,
q=0)andthenbysetting_LI= %2_ oo, _ --, o,, the above
solution reduces to

2
1 -1 (53)

t  o-r,

which is exactly the same as the well known Yamanouchi's
solution (1968).

Due to the absence of data on rewetting velocity on a hot
plate heated by a uniform heat flux beneath the plate, the solution
given by eq. (52) can not be compared with experimental data.
However, experimental data are available on a hot plate without
heating from below. Yamanouchi (1968), for example, has
confirmed reasonable agreement between the limiting solution

given by eq. (53) and his data. The general solution presented
above for a smooth plate will be used in the following section to
yield the solution for the plate with axial grooves.

2. Grooved Plate
The rewetting model of the grooved plate is based on that

of the smooth surface plate. The coolant is driven by the wicking
(surface tension) effect of microfins and is assumed, without loss
of generality, to Fill up the grooves as shown in Fig. 2.

At the level of y = 0,

- K --_aTl___0 (2e2 + e3) = h(T - Ts)(2e I + e3) (54)

+ ha(T- Ta). 2.P2

where, h is the convective coefficient of a smooth surface, Ta is
the environmental temperature, h, is the convective coefficient
between the plate surface and the environmental gas above (h, =
0). At the level ofy = s t-e l,

a2T = lira

ay2

ay-.O

Since the plate is thin,

]-0 -(sl -tt)

S t - e 1

Combining Eqs. (54), (55) and (56) yields

(56)

a2___T=- [____(T-Ts)-q]/($t-e l)Oy2

where the grooved geometric coefficient is defined as

N = (2e 1 + e3)/(2t2+ t3)

(57)

The result given by eq. (57) suggests two useful
simplifications. First, the factor (Nh) is the equivalent convective
heat transfer coefficient of the grooved plate and can be
approximated by that of a thin liquid f'drn on a smooth plate
multiplied by a factor of N, namely,

heat transfer coefficient ] = heat transfer coefficient ]of a grooved plate J N [ of a smooth plate j

where N is more generally def'med as

N = {he wetted perimeter (58)
width of the cross section

Second, the governing equation for the grooved plate with a

uniform heating remains unchanged provided h is replaced by (Nh)
and the dimensionless variables are properly scaled as follows:

P ,, Urp Ce (s t - et)lK; B =Nh (s t - et)lK

A _ q (s I - e|)I[K(T o - Ts)]; _ =x/($ t - el)

(55) _Lt = Ltl (sl - el); _ta " L21(st - el)

r = tl [(s t - ei)2p Cp IK] (59)

where h is the convective coefficient of the smooth plate with a
uniform heating. Therefore, the solution of the grooved plate with
a uniform heating in the wet region is the same as eq. (31) with
the above modification and the solution for the dry region is
identical to eq. (50).

Numerical solutions have also been obtained by solving for the

original governing equation (see Appendix A, eq. (A7)) fixed to
the nonmoving coordinates (x', t),

-Lrl



subject to

00 020
=-- - B 0 ÷A (60)

0r Or/,2

0 (_',0) = 01 (61)

0 (0,z) = 0 (62)

0 (_'z,r) = 01 +Ar (63)

where

7' m x'/s, 7f L =-- L/s

and s=s I and (s t - gl) for the smooth and grooved plates
respectively. The rewetting front location, t/iLl , is determined
from O(_'u, r)= 1. The differential equation is discretized by a
standard finite-difference approach. Figure 3 illustrates the

computed wall temperature of the grooved (or smooth) plate versus
the plate length, the so-called rewetting temperature curve, at
various times when the liquid f'dm is FC-72, which is Casel Of
Fig. 4. These numerical values are selected from the experimental

condition of Fig. 5 of Grimley et al. (1988), namely, for FC-72
fluid on the smooth surface, T i - T s = ll*C, T O - T s = i7.5"C,
"Is = 56°C, T 1 = 100°C from which 01 is calculated. Other
dimensionless parameters A, B and _/L are estimat_ed from the
following values. The needed heat transfer coefficient h =2779.49

W/m2°C is calculated from their boiling curve by eq. (65). For the

grooved copper plate, Cp = 383.1 J/kg°C, ,o = 8954 kglm 3, K =
386 W/m*C. When the liquid fills up the grooves as shown in Fig.
2, the grooved geometric coefficient is N = 1.75, which is based

on their geometric dimension of el = 0.5mm, t 2 = 0.2mm, e3 =
0.4ram, s I = 6mm, and q = 24000 and 100000 W/m 2 for case 1

and 2 respectively. They also reported dryout heat flux data which
will be used in the later comparison. From Fig. 3, it is clearly
shown that the rewetting temperature profiles are transient in
nature, even in the coordinate frame moving with the rewetting
front.

The successful prediction of the rewetting curve by the
approximate analytical solution, eq. (52), for thegrooved (or
smooth) plate with a uniform heating is illustrated in Fig. 4. It

shows that the approximate closed form solution is in reasonably
good agreement with the numerical solution. This may appear to
be somewhat of a surprise in view of the seemingly inconsistent
approximation of treating P (or Ur) as constant. As mentioned

above, such an approximation was necessarily made in the
mathematical manipulation to achieve an approximate closed form
solution. It is equivalent to neglecting higher order terms attributed
to the transient components of P. Figure 4 shows that such an
approximation does yield good results as is expected because all

rewetting velocities tend to level off quickly. In fact, beyond
r=5.208 (or t= 1.4 sec), the difference between the closed form
and the numerical solutions is also indiscernible.

In a recent study, Grimley et al. (1988) conducted
experiments to investigate the enhancement of convective boiling
heat transfer by grooves on a plate heated from beneath.

Unfortunately no rewetting velocity data were reported which
could otherwise be useful to check the validity of the solutions

discussed above. However, they did report interesting data on the
maximum heat flux (the critical heat flux, CHF) that the heater

could supply to the plate without causing the dryout of the flowing
liquid film. Since the dryout and the subsequent rewet of a heated
surface are an integrated problem in heat pipe applications, it is
desirable to be able to explain or predict the heat flux condition

that leads to dryout of the plate. To achieve this objective, a
simple method is presented next and comparisons will be made
with the reported data.

PREDICTION OF THE MAXIMUM DRYOUT HEAT FLUX

Under consideration is a smooth or a grooved plate initially
covered by a thin flowing liquid f'dm at a temperature "Is. The
plate is subjected to a uniform heating. It is of interest to predict
the maximum heat flux that triggers the dryout of the f'dm.

A simple method based on the above rewetting concept is
now extended to provide a means of estimating this maximum
dryout heat flux. For a flowing liquid film over a plate heated by
a heat flux which exceeds the maximum heat removal capability by
convection and boiling, the liquid will cease to advance and begin

to recede. Thus dryout will occur. On this physical premise, the
maximum rate of the heat removal is given by

qmax ,* = Ti (To: - 7",) (64)

where, following the work of Howard et al. (1975), the average
convective boiling heat transfer coefficient of the liquid f'dm is
estimated from

_i "- 1 fro., Qb aT (65)
To,, - r, r- rf

in which T i is the plate temperature at the onset of boiling, and
To, , is the smooth plate Leldenfrost temperature of the rewetting
front and is approximated by the plate temperature at the CHF
location. Qb is th.e boiling curve of the liquid film over the plate.
As an approximation, a form Qb =alO" - T_)n, which fits the
boiling curve, can be used. In the event that the boiling curve of

the flowing liquid film is unavailable, the pool boiling curve could
be used as the first order approximation (Howard et al. 1975).

In the case of the grooved plate, the same analogy developed
above is adopted here. The maximum dryout heat flux is estimated
from

q_x ,g = N- 7i • (To,g- T,) (66)

where To,g is the Leidenfrost temperature of the grooved plate,
also approximated by its CHF temperature. Based on the

experimental data of Grimley et al. (1988) for a fluorocarbon (FC-

72) liquid film falling over heated smooth and grooved plates, T Og
was found to be slightly lower than To, v Thus, if T0,g of tee
grooved plate is unavailable due to the lack of the boiling curve

for the grooved plate, one may attempt to approximate To,g from
the smooth surface data To, s. Then the predicted maximum heat
flux may be slightly overestimated, namely,

qmax,g < N " [i "(Tog - Ts)

As an applicatiorl to show the feasibility of the above
method, the experimental conditions and geometries of Grimley et



al. (1988)areused.In their experiments,the liquidfilm
completelycoveredthesmooth and grooved plates, t1=0.5 mm,
Q=0.2 mm and e_=0.4 mm, such that N=2.25 (from eq. (58)).
(Ti - Ts) and (To - T_) are taken from their boiling curves. The
average boiling heat transfer coefficient is calculated from their

smooth surface boiling curve and eq. (65). The two correlation
constants a 1 and n are determined by arbitrarily collocating the
boiling curve of the smooth surface plate at two locations, Ti and
To, where the boiling heat fluxes are designated by qi and qcnr_,
respectively. Table 1 shows the comparison between the prexlicted
maximum dryout heat flux, qm,x, using eqs. (64) and (66), and the
reported dryout data qcH_ for both types of plates. The agreement
is satisfactory particularly in view of the simplicity of the method
proposed for the grooved plate. The same agreement is shown in

Table 2 when the mean inlet velocity of the falling film is
increased from 0.5 m/s to 1.0 m/s.

CONCLUSIONS

The rewetting process of a smooth surface plate subjected
to a uniform heating has been investigated. A proper governing
transient heat conduction with a convective boiling condition has
been solved to yield an approximate closed form solution for the
plate temperature profdes in the wet and dry regions of the plate.
From the temperature profdes, an approximate closed form
solution for the rewetting velocity over the heated plate has been
obtained. Numerical solutions have also been presented to check
the validity of the closed form solution. The closed form rewetting

velocity was found to be in good agreement with that of the
numerical solution. It is shown that in a limiting condition the
present rewetting velocity solution reduces correctly to the existing
solution for the rewetting of a hot, isothermal plate without

heating. However, contrary to the case without heating, the
rewetting process on the plate with a uniform heating is found to
be transient (time variant) even on the coordinate frame moving
with the rewetting front. The rewetting velocity is found to be
much faster initially and then levels off later.

A method to address the rewetting process of the grooved
plate based on the smooth plate rewetting model has been

developed. It has been shown that, by properly def'med scalings,
the solution for the smooth plate can be made to be applicable for
the grooved plate.

Finally, the dryout of a liquid f'dm over a heated plate has
been investigated. A simple method has been proposed to predict
the dryout critical heat flux of the smooth and grooved plates. The
results of the prediction were compared and found in reasonable
agreement with the existing experimental data.
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APPENDIX A: CO-ORDINATE TRANSFORMATION

The heat conduction equation within a smooth plate as

shown in Fig. 1 is

OT = K 0x 'z +pCp _ x'
(AD

For a coordinate system x-o-y moving with the rewetting front,

' (A2)
X' = x + [ Ur(t)dt

7"(x', 0 =T(x(x',O,O (A3)

Then, noting that
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X' X t X t

x t

eq. (A1) can be written as

(A4)

OT #T

For a thin plate subjected to heating from below, it further reduces
to

} OT h
OT = K 02T + Ur _ (r- Ts) + q

-E x oG ox2 o_ oc,:, pc,:,
°

or in dimensionless form

aO a20 O0 (A6)
= _ +P-- -BO +A

Or 0712 a_

where the dimensionless variables and parameters are given by eq.
(2).

For the purposes of comparison and numerical computation,
the above is written in untransformed coordinates (x', t) as

00 020
- - B 0 ÷ A (A"/)

0r 07 2

where

17/ == X//SI (AS)

Fig. 2. Microfin Structure and Cross-section Shape of Grooved
Plate
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Table 1. Comparison Between Predicted and Measured (Grimley, 1988, Fig. 8,9)
Maximum Dryout Heat Flux

GoomeU'y Mean TI-T. To-T .
Inle_ [°el [oC]

Velocity
[m/s]

Smooth 0.5 12 18

Surface

Grooved 0.5 15

Surface

ul - h rw/m2"Cl

15.39256 2.84286

qi [W/m2] [w/m_1
(pred.)

2286.43 18000 57000 41155.74

8O0OO

= 5144.468

77167.01

Table 2. Comparison Between Predicted and Measured (Grimley, 1988, Fig. 5)
Maximum Dryout Heat Flux

Geometry

Smooth

Surface

Grooved

Surface

Mean TfT. To-T .
hdet [*el [°el

Vdoeity

[ndsl

1.0

1.0

a I rl

11 17.5 230.5495 1.93726

14.3

[Wlm2*C] ch [W/m2l qcttF [W/m2] _ [W/m2l

(data) (pied .)

2779.49 24000 59000 48641.08

N • h 90000 89430.10

- 6253.85

! i ¸

J


